fbpx Un'equazione per la vita | Science in the net

Un'equazione per la vita

Primary tabs

Read time: 7 mins

Le equazioni, un modo estremamente conciso e simbolico di descrivere un fenomeno, sono eguaglianze che possono essere utilizzate per trovare il valore di un termine, l’incognita, quando sono noti i valori degli altri termini.
Per esempio, l’equazione di stato dei gas perfetti (p = nRT/V), ci permette di ricavare la pressione p esercitata da un gas, una volta noto il volume V che occupa, la sua temperatura T, il suo numero di moli n (e ricordando il valore della costante R), così come l’equazione del moto ci permette di ricavare l’accelerazione “a” che risulta dall’applicare una forza “F” a una massa “m”.
Un’equazione che non permettesse di essere “risolta”, di arrivare a un risultato, lascerebbe molti quanto meno perplessi.
E’ questo il caso dell’equazione − famosa, ma appunto controversa − formulata dal radioastronomo Frank Drake nel 1961 e che da lui prende il nome.

L’equazione nasce in occasione della prima conferenza SETI (Search for Extra-Terrestrial  Intelligence) organizzata a Green Bank in Virginia (USA) per rispondere alla domanda che è alla base del progetto SETI: “Quante sono oggi le civiltà nella nostra Galassia con cui è possibile stabilire una comunicazione radio?”.
L’approccio di Drake è quello di trattare il problema come un problema di Fermi (dei problemi di Fermi abbiamo parlato in questa stessa rubrica tempo addietro, v. “le Stelle” n. 106, pp. 8-9) scomponendolo nei suoi termini elementari e impostando un’analisi per ordini di grandezza e stime ragionevoli delle quantità in gioco di cui non si conoscono (ed è impossibile determinare con sicurezza) i valori.

L’equazione di Drake è: 

N = R*x ƒp x ne x ƒl x ƒi x ƒc x L 

Dove R* è il tasso medio di formazione stellare della nostra Galassia, ƒp la frazione di stelle intorno alle quali esistono sistemi planetari, ne è il numero medio di pianeti (o satelliti), per sistema planetario, che possono permettere lo sviluppo di vita, ƒl è la frazione di questi in cui effettivamente la vita si sviluppa, ƒi è la frazione in cui la vita evolve in forme intelligenti (civiltà), ƒc è la frazione di dette civiltà che sviluppa una tecnologia per propagare segnali radio rivelabili nello spazio e infine L è il tempo (durata) in cui tale civilizzazione propaga effettivamente nello spazio segnali radio rivelabili.
Se moltiplicate tutti questi fattori tra di loro ottenete un numero puro (adimensionale) visto che il primo termine ha le dimensioni di una frequenza, l’ultimo di un tempo e gli altri sono altrettanti numeri puri.
Quello che ottenete è dunque N, il numero di civiltà della nostra Galassia che, oltre a noi, effettivamente trasmettono segnali radio nello spazio.

È certamente chiaro a tutti che quando l’equazione fu presentata (era il 1961), i vari parametri che la definiscono erano talmente incerti (o completamente sconosciuti) da renderla del tutto inutilizzabile per arrivare a una stima di N.
Basta ricordare ad esempio, che a quel tempo non un singolo pianeta extrasolare era ancora stato scoperto. Era quindi possibile, facendo opportune ipotesi (non sostenute da alcun fatto, ma nemmeno negabili con certezza), risolverla ottenendo per N valori compresi tra zero e molti miliardi. Ed è attribuibile proprio a questa incertezza l’origine della controversia sull’importanza dell’equazione di Drake.
Che possa essere “risolta” ottenendo quel che si vuole, fornisce buoni argomenti a chi la considera inutile e non-scientifica, nel senso di essere costruita su ipotesi non verificabili. Forse Pauli, fosse stato ancora vivo, l’avrebbe liquidata con il suo proverbiale “non è nemmeno sbagliata”. Altri, io con loro, la ritengono comunque un utile e interessante esercizio intellettuale, meritevole, di tanto in tanto, di essere rivisitato.
Questa non è tuttavia una buona ragione per buttar via l’equazione di Drake.

Da quando Drake scrisse la sua equazione abbiamo infatti registrato moltissimi progressi che ci permettono di ragionare con maggior confidenza almeno sui suoi primi termini. Il tasso di formazione stellare nella nostra Galassia è stato oggetto in questi ultimi anni di approfonditi studi a diverse lunghezze d’onda che si sono avvalsi dei dati ottenuti con i migliori telescopi disponibili, a terra e nello spazio, da GALEX a Spitzer, da Hubble a Herschel.
Sappiamo che è dell’ordine di 1-2 masse solari all’anno e che questo valore è noto entro un fattore due. Il primo termine dell’equazione, di totale competenza degli astronomi, si può a questo punto considerare noto. Anche il secondo termine (la frazione di stelle dotate di pianeti) è di competenza degli astronomi, i quali hanno ormai confermato l’esistenza di oltre mille pianeti extrasolari (ancor più sono i candidati in fase di studio).
Di questi, molti sono in sistemi multipli, sistemi che − come il nostro − vedono diversi pianeti orbitare intorno alla stessa stella. Si consolida quindi, sulla base di dati osservativi, la convinzione che sia molto comune, per una stella, essere caratterizzata da un sistema planetario complesso. Dunque, anche sul secondo termine dell’equazione gli astronomi stanno facendo chiarezza e riducendo le incertezze: ƒp è grande, probabilmente molto vicino a 1.
Su ne (il numero di pianeti in un dato sistema planetario con condizioni favorevoli allo sviluppo della vita; che si trova quindi nella cosiddetta fascia di abitabilità, v. “le Stelle” n. 129, pp. 72-73) e su ƒl (frazione di questi in cui e1ettivamente la vita si sviluppa) stiamo lavorando ma ci vorrà ancora del tempo prima che si possano avere stime quantitative robuste.
Cominciano comunque ad apparire alcuni risultati preliminari; una recente analisi dei dati ottenuti dal satellite Kepler, ad esempio, ha portato alcuni ricercatori a sostenere che il 22% delle stelle simili al Sole possiede pianeti delle dimensioni della Terra in orbita nella zona abitabile.
È bene comunque ricordare che il concetto di abitabile è tutt’altro che condiviso ed è ancora oggetto di riflessioni e discussioni (v. “le  Stelle” n. 123, pp. 10-11).
Quello che gli astronomi possono fare, e hanno allo studio strumentazione sempre più adatta per farlo, è di caratterizzare sempre meglio le proprietà dei pianeti scoperti (albedo, temperatura superficiale e sue variazioni, caratteristiche orbitali, ecc.) e in particolare studiare le loro atmosfere (composizione chimica) per capire se siano adatti allo sviluppo di qualche forma di vita o se addirittura la stiano eventualmente ospitando (lo potremmo forse capire attraverso la rilevazione dei cosiddetti bio-indicatori, quali ad esempio l’ossigeno e l’ozono, l’ossido di diazoto, e ancor più le molecole organiche).
Qui il discorso diventa però inevitabilmente più incerto in quanto non abbiamo esperienza in materia di varietà di forme di vita, conoscendo solo quella che si è sviluppata sulla Terra.
La determinazione di ne e di ƒl è comunque possibile, richiederà tempo e una notevole quantità di dati e il contributo non solo degli astronomi ma anche di chimici, biologi e geologi. Non c’è dunque ragione perché in un futuro nemmeno troppo lontano non si possano determinare, con ragionevole approssimazione, i primi quattro termini dell’equazione di Drake.
Ma qui si finisce di ragionare: ƒi (la frazione di pianeti in cui la vita evolve in forme intelligenti organizzate in civiltà) e ƒc (la frazione di dette civiltà che sviluppa una tecnologia per trasmettere segnali radio rivelabili nello spazio) sono oggetto di pura speculazione. Per non dire di L  (la durata di una tale civilizzazione capace e interessata alla comunicazione radio interstellare), che è stata discussa unicamente nei romanzi di fantascienza e, almeno fino a quando saremo soli (e non avremo dunque accumulato dati al riguardo), è impossibile da determinare, anche con il concorso del sapere di tutte le discipline.

Questa non è tuttavia una buona ragione per buttar via l’equazione di Drake. Vale invece la pena di rivisitarla chiedendosi se si possa migliorare riformulando la domanda iniziale, spostando l’interesse dal numero di “radioamatori” nella nostra Galassia (giustificato dall’interesse di Drake nell’allora nascente progetto SETI) al numero, certamente maggiore, e più facilmente determinabile, delle forme di vita complesse.
Questa generalizzazione è motivata e giustificata dal crescente interesse per lo studio degli esopianeti reso possibile dall’impressionante quantità e qualità dei dati che sono diventati disponibili e in previsione di quelli che lo diventeranno nei prossimi anni.
Se consideriamo il nostro pianeta, la Terra, ci possiamo facilmente rendere conto di essere stati “radioamatori” (ascoltando poco e parlando quasi mai) per una frazione insignificante (in prima approssimazione 3x10-8, ovvero trenta miliardesimi) del tempo in cui siamo stati invece “abitabili”.

Uno studio della Terra, analogo a quelli che stiamo conducendo – o programmando di condurre – su alcuni degli esopianeti recentemente scoperti, fatto da qualche alieno in un qualsiasi momento degli ultimi due miliardi di anni, avrebbe dimostrato quanto è interessante il terzo pianeta più interno del Sistema Solare. Ma nessuno se ne sarebbe accorto ascoltandoci a 1420 MHz, se non per una frazione risibile di questo tempo.
Chiudo con una nota “leggera” e divertente. Non esiste solo il progetto SETI; l’amico e collega Roberto Della Ceca, coordinatore dell’unità dell’INAF per la gestione dei progetti spaziali, ha trovato in rete e mi ha segnalato anche il progetto WETI (Waiting for extraterrestrial  intelligence). Consiglio vivamente di leggere). Mi chiedo quale di questi due progetti, SETI o WETI, darà per primo la notizia della scoperta di un’intelligenza extraterrestre.

Tratto da Le Stelle n° 131


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Discovered a New Carbon-Carbon Chemical Bond

A group of researchers from Hokkaido University has provided the first experimental evidence of the existence of a new type of chemical bond: the single-electron covalent bond, theorized by Linus Pauling in 1931 but never verified until now. Using derivatives of hexaarylethane (HPE), the scientists were able to stabilize this unusual bond between two carbon atoms and study it with spectroscopic techniques and X-ray diffraction. This discovery opens new perspectives in understanding bond chemistry and could lead to the development of new materials with innovative applications.

In the cover image: study of the sigma bond with X-ray diffraction. Credits: Yusuke Ishigaki

After nearly a year of review, on September 25, a study was published in Nature that has sparked a lot of discussion, especially among chemists. A group of researchers from Hokkaido University synthesized a molecule that experimentally demonstrated the existence of a new type of chemical bond, something that does not happen very often.