fbpx Una mimosa per Clara | Science in the net

Una mimosa per Clara

Primary tabs

Read time: 4 mins

Tra le conquiste più importanti della chimica c’è la sintesi industriale dell’ammoniaca a partire dai costituenti, azoto e idrogeno, presenti nella molecola in rapporto atomico 1:3. L’ammoniaca ha vari impieghi ma soprattutto è indispensabile per la produzione dei fertilizzanti azotati, i prodotti che hanno consentito all’agricoltura moderna di incrementare la produzione e assicurare il cibo per tutti noi.
Si potrebbe pensare che data la sua semplice formula sia abbastanza facile sintetizzarla dagli elementi costituenti, uno dei quali (l’azoto), è presente in alta concentrazione nell’aria che respiriamo. Ci provarono in molti ma solo all’inizio del secolo scorso si riuscì a farlo utilizzando alte pressioni e temperature adeguate, in presenza di opportuni catalizzatori.
Il francese Henri Louis Le Châtelier (Parigi 1850– Miribel-les-Échelles, 1936) brevettò, nel 1901, uno dei primi processi ma poi non proseguì gli studi anche in seguito al verificarsi di un’esplosione. Restava parecchio lavoro da fare, specie in termini di condizioni operative da dedursi dalla termodinamica, mentre rimanevano insoluti i problemi che sorgevano quando si trattava di passare alla produzione industriale.
Il passo avanti decisivo fu compiuto dal tedesco Fritz Haber (Breslau,1868 - Basel, 1934) il quale, grazie anche alla collaborazione con la BASF, attraverso il chimico e ingegnere Carl Bosch (Colonia, 1874 – Heidelberg, 1940), riuscì nell’intento, prima con catalizzatori a base di uranio e osmio, poi con l’assai meno costoso ferro, operando a 200 atmosfere e 400-450°C. Il primo brevetto di Haber è del 1908, la produzione con tecnologia Haber-Bosch (impianto pilota) del 1910, l’inizio della produzione su scala industriale  del 1913.
Haber vinse, nel 1918, il premio Nobel per la Chimica proprio per la sintesi dell’ammoniaca dagli elementi. Anche Bosch ottenne lo stesso riconoscimento nel 1931, insieme a Friedrich Bergius, per l’invenzione e lo sviluppo di metodi chimici ad alta pressione. L’assegnazione del premio ad Haber fu duramente contestato dagli scienziati dei paesi che avevano combattuto contro la Germania durante la Grande Guerra. Ciò che gli rimproveravano era il fatto di essersi impegnato, con zelo quasi fanatico, nelle operazioni militari basate sui gas anzi, in qualche caso, di averle dirette di persona.
L’attacco chimico alla cittadina belga di Ypres (22 aprile 2015), in cui furono rilasciate 168 tonnellate di cloro gassoso su un fronte di circa sei chilometri, causando la morte di 5000 soldati alleati in soli dieci minuti, valse a Bosch il macabro soprannome di “generale in camice bianco” e padre della guerra chimica.

Se la sintesi dell’ammoniaca era stata una conquista epocale, benefica per l’Umanità, almeno per quanto si riferiva all’agricoltura, lo sviluppo degli esplosivi da usarsi in guerra e l’orrore delle armi chimiche gettava ombre pesanti sulla figura di Haber. Anche la sua vita famigliare ne risentì pesantemente in quanto la moglie, Clara Immerwahr (Breslau, 1870 – Dahlem, 1915), anche lei chimico, non approvava affatto le scelte del marito.
Clara era stata la prima donna a conseguire il dottorato a Breslau (2 Dicembre 1900). L’aveva ottenuto in chimica fisica con una  tesi sulla solubilità dei sali metallici, avendo come supervisore Richard Abegg (1869-1910). Dopo il dottorato, Clara intraprese la carriera scientifica sotto la guida di Abegg e si conoscono almeno cinque articoli scientifici con la sua firma. Aveva sposato Haber nel 1901 e, da quel momento, la sua carriera finì perché sacrificò i suoi interessi alla famiglia e soprattutto perché soverchiata dal carattere totalizzante del marito. La convivenza con Haber si trasformò presto in un supplizio. Il marito era talmente assorbito dal lavoro al punto di ignorare, quasi, l’esistenza dei famigliari e il suo furore ideologico, aborrito dalla moglie completò il quadro.

Ricorre quest’anno l’anniversario della morte di Clara, la cui tragica fine, dovuta a suicidio, non può essere relegata semplicemente ad  episodio di natura famigliare ma costringe, ancora una volta, a porsi interrogativi sul cattivo uso della scienza. Forse, anche per questo, intorno a lei sono fioriti drammi teatrali, programmi televisivi e un importante premio scientifico.
In occasione dell‘8 Marzo piace qui ricordarla come la prima donna che ottenne il dottorato a Breslau. Fu un esempio coraggioso di emancipazione femminile, tristemente naufragato anche a causa dell’egoismo maschile e della follia distruttiva di una guerra che travolse le coscienze.

Per saperne di più:
Jan Apotheker (Ed.), Livia Simon Sarkadi (Ed.), “European Women in Chemistry”, Wiley, 2011


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Why have neural networks won the Nobel Prizes in Physics and Chemistry?

This year, Artificial Intelligence played a leading role in the Nobel Prizes for Physics and Chemistry. More specifically, it would be better to say machine learning and neural networks, thanks to whose development we now have systems ranging from image recognition to generative AI like Chat-GPT. In this article, Chiara Sabelli tells the story of the research that led physicist and biologist John J. Hopfield and computer scientist and neuroscientist Geoffrey Hinton to lay the foundations of current machine learning.

Image modified from the article "Biohybrid and Bioinspired Magnetic Microswimmers" https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.201704374

The 2024 Nobel Prize in Physics was awarded to John J. Hopfield, an American physicist and biologist from Princeton University, and to Geoffrey Hinton, a British computer scientist and neuroscientist from the University of Toronto, for utilizing tools from statistical physics in the development of methods underlying today's powerful machine learning technologies.